
Knowing a, we can  predict  through Eq. 
(28)  a  definite  scaling  law  binding on the 
iterates  of  any  scheme  possessing  period 
doubling. The law has, indeed,  been  am- 
ply verified experimentally. By Eq.  (29), 
we see that  the relevant  operation  upon 
functions that underlies  period  doubling 
is functional  composition followed by 
magnification,  where  the  magnification 
is determined  by the fixed-point  condi- 
tion of Eq.  (29) with the  function  g  the 
fixed point in this  space of functions. 
However,  Eq.  (29)  does  not  describe  a 
stable  fixed  point  because we have  not 
incorporated in it  the  parameter  increase 
from X, to X,,,. Thus,  g is not  the 
limiting function  of  the  curves in the  cir- 
culation  squares,  although  it is intimately 
related to  that function.  The full theory is 
described in the  next  section.  Here we 
merely state  that we can determine  the 
limiting function and thereby can deter- 
mine  the  location of the  actual  elements 
of limiting  2"-cycles. We  also  have es- 
tablished that g is an unstable fmed point 
of functional  composition,  where  the  rate 
of  divergence away  from  g is precisely 6 
of Eq.  (3) and so is computable.  Accor- 
dingly,  there is a full theory  that  deter- 
mines, in a  precise  quantitative  way,  the 
aperiodic limit of functional  iterations 
with an unspecified function f. 

Some  Details of the Full Theory 

Returning to Eq. (28), we are in a 
position to describe  theoretically  the uni- 
versal  scaling of high-order  cycles and 
the  convergence to a  universal limit. 
Since d, is the  distance  between  x = X 
and the  element  of  the 2"-cycle at h, 
nearest  to x = and since  this  nearest 
element is the 2"-' iterate  of x = 
(which is true  because  these  two  points 
were  coincident  before  the  nth  period 
doubling  began to split  them  apart), we 
have 

d, = f2"-' (L,,, x) - X. (32) 
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Fig. 8. The superposition ofthe suitably magnved dotted squares offzn-' at h, (as in 
Figs. Sa, 7a, ...). 

For  future work  it  is  expedient to per- 
form  a  coordinate  translation  that  moves 
x = x to  x = 0. Thus,  Eq.  (32)  becomes 

d, = f2,-' (h,,O) . (33) 

Equation  (28) now determines that the 
rescaled  distances, 

rn (-a), 4,' . 

will converge to a  definite finite value as 
n -+ m. That is, 

tim (-a)"f2" (x,,+~,o) (34) 
n-m 

must  exist if Eq.  (28) holds. 
However,  from Fig. 8 we know 

something  stronger  than Eq. (34).  When 
the nth iterated  function is magnfled by 
(-a>", it  converges to a definite function. 
Equation  (34) is the  value of this  func- 
tion at x = 0. After  the  magnification, 
the  convergent  functions  are given by 

(-a)"f'" (Xn+l,x/(-a)") . 
Thus, 
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Fig. 9. The jhction g, .  The  squares  locate  cycle  elemenls. 

is the limiting function  inscribed in the 
square of Fig.  8.  The  function  gl(x)  is,  by 
the  argument  of  the  restriction off   to  in- 
creasingly  small  intervals about its  max- 
?mum,  the universal limit of all iterates of 
all Ps with  a  quadratic  extremum.  In- 
deed,  it  is  numerically  easy to  ascertain 
that g, of Eq. (35) is  always  the  same 
function  independent  of  the f i n  Eq. (32). 

What is  this  universal  function  good 
for? Figure 5a shows  a  crude  approx- 
imation  of  g, [n = 0 in the limit of Eq. 
(35)], while Fig. 7a  shows a  better  ap- 
proximation (n = 1). In  fact, the  extrema 
of g,  near  the fixed points of g,  support 
circulation  squares  each of which  con- 
tains two  points of the cycle.  (The two 
squares  shown in Fig. 7a locate  the  four 
elements-of  the cycle.) That is, g, deter- 
mines the  location  of  elements of high- 
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order  2”-cycles  near  x = 0. Since g, is 
universal, we now  have  the  amazing 
result  that  the  location  of  the  actual ele- 
ments  of  highly  doubled  cycles is univer- 
sal! The  reader might  guess  this is a very 
powerful  result.  Figure 9 shows  g,  out to 
x sufficiently large to have 8 circulation 
squares, and hence  locates  the  15 ele- 
ments of a  2“-cycle  nearest to x = 0. 
Also, the universal  value of the  scaling 
parameter a, obtained  numerically, is 

a = 2.502907875 ... . 
Like 6, a is a  number that  can be 
measured [through an experiment that 
observes  the d, of Eq. (28)J in any 
phenomenon  exhibiting  period  doubling. 

If g, is  universal,  then of course  its 
iterate g: also is  universal.  Figure  7b 

depicts an early  approximation to this 
iterate. In fact, let us define a new uni- 
versal  function  go,  obtained by scaling 
g:: 

go(x) = -ag:(-x/a) . (3 7) 

(Because g, is universal and the  iterates 
of our  quadratic function  are all sym- 
metric in x,  both  g,  and  go  are  symmetric 
functions.  Accordingly,  the  minus sign 
within g: can be dropped with impunity.) 
From Eq. ( 3 9 ,  we now can write 

go(x) = t‘im(-a)”fZn(h,,x/(-a>”> . (38) 
n- a, 

[We  introduced  the  scaling of Eq. (37) to 
provide  one  power of a per  period  dou- 
bling, since  each  successive  iterate of f2” 
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reduces  the scale by a] .  
In  fact, we can generalize  Eqs.  (35) 

and  (38)  to  a  family of universal  func- 
tions g,: 

To understand this, observe  that go 
locates  the  cycle  elements as the fixed 
points of  go at extrema;  g,  locates the 
same  elements  by  determining  two ele- 
ments  per  extremum. Similarly, g, deter- 
mines 2‘ elements about  each extremum 
near  a fixed point of g,. Since  each f2” is 
always  magnified by (-a>n for each r, 
the scales of all g, are  the same.  Indeed, 
g, for  r > 1  looks like g, of Fig. 9, except 
that  each  extremum is slightly higher, to 
accommodate a 2‘-cycle. Since  each ex- 
tremum  must  grow  by  convergently 
small amounts to  accommodate higher 
and  higher 2r-cycles, we are led to  con- 
clude that 

must exist. By Eq. (39), 

Unlike the  functions g,,  g(x) is obtained 
as a limit  of fZn’s  at  afixed value of h. In- 
deed, this is the special significance of 
h,; it is an isolated value  of h at which 
repeated  iteration  and  magnification  lead 
to  a  convergent  function. 

We  now  can write  the  equation that g 
satisfies. Analogously to Eq. (37), it is 
easy to verify that all g, are related by 

By Eq. (40), it follows that g satisfies 

The reader can verify that Eq. (43) is in- 

variant  under  a  magnification of g. Thus, 
the theory  has  nothing  to  say  about  ab- 
solute scales. Accordingly, we must fix 
this by hand by setting 

g(0) = 1 . (44) 

Also, we must specify the nature of the 
maximum of g  at x = 0 (for example, 
quadratic). Finally, since g is to be  built 
by iterating a - x2,  it must be both 
smooth  and  a  function of x  through x2. 
With  these specifications, Eq.  (43)  has  a 
unique solution. By Eqs.  (44)  and (43), 

g(0) = 1 = -ag(g(O)) = -ag(l) 5 

so that 

Accordingly, Eq. (43)  determines a 
together with g. 

Let us  comment on the  nature  of Eq. 
(43), a so-called functional  equation. 
Because  g is smooth, if we know its 
value at  a finite number of points, we 
know its value to  some  approximation 
on  the interval containing  these  points by 
any sufficiently smooth interpolation. 
Thus,  to  some degree of accuracy,  Eq. 
(43) can  be replaced by a finite coupled 
system of nonlinear  equations.  Exactly 
then, Eq.  (43) is an infinite-dimensional, 
nonlinear  vector  equation.  Accordingly, 
we have  obtained the solution to one- 
dimensional period doubling  through  our 
infinite-dimensional, explicitly universal 
problem.  Equation  (43)  must be infinite- 
dimensional  because it must  keep  track 
of the infinite number of cycle  elements 
demanded of any  attempt  to solve the 
period-doubling  problem.  Rigorous 
mathematics for equations like Eq. (43) 
is  just beyond  the  boundary of present 
mathematical  knowledge. 

At  this point, we must  determine  two 
items. First, where is 6? Second, how do 
we obtain g,, the real function of interest 
for locating  cycle  elements? The two 

problems  are part of one question. Equa- 
tion (42) is itself an  iteration  scheme. 
However,  unlike  the  elements in Eq. (4), 
the elements  acted  on in Eq. (42) are 
functions. The  analogue  of the function 
off  in Eq. (4) is the operation in function 
space of functional  composition followed 
by a  magnification. If  we call this opera- 
tion T, and  an  element of the function 
space w, Eq.  (42)  gives 

In  terms of T,  Eq.  (42)  now  reads 

and  Eq.  (43)  reads 

Thus,  g is precisely the fixed point of T. 
Since  g is the limit of the sequence g,, we 
can  obtain g, for large r by linearizing T 
about its fixed point g. Once we have g, 
in the linear regime,  the  exact  repeated 
application of T by Eq.  (47) will provide 
g,.  Thus, we must  investigate  the 
stability of T at  the fixed point g. 
However, it is obvious that T is unstable 
at  g: for a large enough r, g, is a  point ar- 
bitrarily close to  the fixed point g; by Eq. 
(47), successive  iterates of g, under T 
move away  from g. How  unstable is T? 
Consider  a  one-parameter  family of 
functions fk, which means  a “line” in the 
function  space. For each f, there is an 
isolated parameter  value h,, for which 
repeated  applications of T lead to  con- 
vergence towards  g [Eq. (41)]. Now, the 
function  space  can be “packed” with  all 
the lines corresponding to the various fs. 
The set of all the  points  on  these lines 
specified  by the  respective h,’s deter- 
mines  a  “surface”  having  the  property 
that repeated  applications of T to  any 
point  on it will converge to g. This is the 
surface of stability of T  (the  “stable 
manifold” of T through g). But  through 
each  point of this surface issues out  the 
corresponding  line,  which  is  one- 
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dimensional since it is parametrized by a 
single parameter, h. Accordingly,  T is 
unstable in only one direction in function 
space.  Linearized about g, this line of in- 
stability can be written as  the one- 
parameter  family 

(49) 

which passes  through g (at h = 0) and 
deviates  from g along the unique direc- 
tion h. But fh is just  one of our  transfor- 
mations  [Eq. (4)]! Thus,  as we vary h, EA 
will undergo  period  doubling,  doubling 
to  a 2"-cycle at A,. By Eq. (41), hm for 
the  family of functions fh in Eq.  (49) is 

h,=0. 

Thus, by  Eq. (1) 

h, - 6-" 1 

Since  applications  of T by Eq.  (47) 
iterate in the  opposite direction (diverge 
away  from g), it now follows that  the 
rate of instability of T along  h  must be 
precisely 6 .  

Accordingly, we  find 6 and g, in the 
following  way. First, we must linearize 
the operation T about its fixed point g. 
Next, we must  determine  the stability 
directions of the linearized operator. 
Moreover, we expect  there  to be 
precisely one direction of instability. In- 
deed, it turns  out  that infinitesimal defor- 
mations  (conjugacies) of g  determine 
stable directions, while a unique  unstable 
direction, h, emerges with a stability rate 
(eigenvalue) precisely the 6 of Eq. (3). 
Equation  (49) at h, is precisely g, for 
asymptotically large r. Thus g, is known 
asymptotically, so that we have  entered 
the sequence g, and  can  now, by 
repeated  use of Eq. (47), step  down  to g,. 
All the ingredients  of  a full description of 
high-order  2"-cycles  now are  at  hand 
and evidently are universal. 

Although we have said that  the func- 
tion g, universally  locates  cycle  elements 

near x = 0, we must  understand  that it 
doesn't  locate all cycle  elements.  This is 
possible  because  a finite distance of the 
scale of g, (for example,  the  location of 
the element  nearest to x = 0) has  been 
magnified by a" for n diverging. Indeed, 
the distances  from  x = 0 of  all elements 
of a 2"-cycle, "accurately"  located by g,, 
are reduced by -a in the 2"+'-cycle. 
However, it  is obvious  that  some ele- 
ments  have  no such scaling: because f(0) 
= a, in Eq. (13), and a, + a,, which is 
a definite nonzero  number,  the  distance 
from  the origin of the element  of the 2"- 
cycle  farthest  to  the right certainly has 
not been reduced by -a at  each period 
doubling.  This  suggests that we must 
measure  locations of elements on  the  far 
right with respect to  the  farthest right 
point. If we do this, we can see that these 
distances scale by a', since they are  the 
images  through  the  quadractic  max- 
imum off at x = 0 of elements close to x 
= 0 scaling with -a. In  fact, if we image 
g,  through  the  maximum of f  (through a 
quadratic  conjugacy),  then we shall in- 
deed  obtain  a new universal  function 
that  locates cycle  elements  near the 
right-most  element.  The  correct  descrip- 
tion  of a  highly  doubled  cycle now 
emerges  as  one of universal  local 
clusters. 

We can  state  the  scope of universality 
for  the  location  of  cycle  elements 
precisely. Since f(h,, x) exactly  locates 
the  two  elements of the 2l-cycle, and 
since f(h,, x)  is an  approximation  to g1 [n 
= 0 in Eq. (35)], we evidently  can  locate 
both  points  exactly by appropriately 
sealing g,.  Next,  near x = 0, f*(h2, x)  is a 
better approximation to g, (suitably 
scaled). However, in general, the  more 
accurately we scale g,  to determine  the 
smallest  2-cycle  elements, the  greater is 
the  error in its determination of the right- 
most elements.  Again,  near  x = 0, f4(h,, 
x) is a still better approximation  to g,. In- 
deed,  the suitably scaled g, now can 
determine several points about x = 0 ac- 
curately,  but  determination of the right- 

most elements is  still  worse. In this 
fashion, it follows that g,, suitably 
scaled, can  determine 2' points of the 2"- 
cycle  near  x = 0 for r << n. If we focus  on 
the neighborhood of one of these 2' 
points at  some definite distance  from x = 
0, then  by  Eq. ( 3 5 )  the larger the n,  the 
larger the scakd distance of  this  region 
from x = 0, and so, the  poorer the ap- 
proximation of the location of  fixed 
points in it by g,. However, just  as we 
can  construct  the  version of g, that  ap- 
plies at  the  right-most  cycle  element, we 
also can  construct the version of g, that 
applies at this chosen  neighborhood. Ac- 
cordingly, the universal  description is set 
through an acceptable  tolerance: if  we 
"measure" f2" at some definite n, then we 
can use the  actual  location of the ele- 
ments as foci for 2" versions of g,, each 
applicable at  one such point. For all 
further  period  doubling, we determine 
the new cycle  elements  through  the g,'s. 
In summary,  the more  accurately we 
care to know the locations of arbitrarily 
high-order  cycle  elements,  the more 
parameters we must  measure (namely, 
the  cycle  elements at  some  chosen  order 
of period doubling). This is the  sense in 
which  the  universality  theory is 
asymptotic.  Its ability to have serious 
predictive power is the  fortunate  conse- 
quence of the high convergence rate 
6(-4.67). Thus, typically after the first 
two or three period  doublings, this 
asymptotic  theory is already accurate  to 
within several percent. If a period- 
doubling  system is measured in its 4- or 
8-cycle, its behavior  throughout  and 
symmetrically  beyond  the  period- 
doubling  regime also is determined to 
within a few percent. 

To make precise dynamical predic- 
tions, we do not  have to  construct all the 
local versions of g,; all we really need 
to know is the local sca2ing everywhere 
along the attractor.  The scaling is -a at 
x = 0 and a2 at the right-most  element. 
But what is  it at  an  arbitrary  point? We 
can  determine  the scaling law if  we order 
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elements  not  by  their  location  on  the x- 
axis,  but  rather by their  order as iterates 
of x = 0. Because  the  time  sequence in 
which a  process  evolves is precisely  this 
ordering,  the  result will be of  immediate 
and  powerful  predictive value. It is 
precisely  this  scaling  law  that  allows  us 
to  compute  the  spectrum of the  onset  of 
turbulence in period-doubling  systems. 

What must we compute?  First,  just  as 
the  element in the 2"-cycle nearest  to x = 
0 is the  element  halfway  around  the cy- 
cle from x = 0, the  element  nearest to  an 
arbitrarily  chosen  element is precisely 
the  one  halfway around  the cycle  from it. 
Let us denote by dn(m)  the  distance bet- 
ween the mth cycle  element  (x,,,) and  the 
element  nearest to it  in a 2"-cycle. [The 
d, of Eq.  (28) is dn(0)]. As  just explained, 

dn(m) = X, - (hn,x,) . ( 5  2) f2n-1 

However, x, is  the mth iterate of x. = 0. 
Recalling  from  Eq. (6) that powers  com- 
mute, we find 

d,(m) = fm(&,O) 

- f,(h,, f2"-'(hn,0)). ( 5 3 )  
Let  us,  for  the  moment,  specialize to  m 
of  the  form 2"-', in which  case 

For r << n (which  can still allow r >> 1 for 
n large), we have, by Eq. (39), 

dn(2"-3 - (-a)-("-,) [gr(O) 

- g,((-a>"-' f2"-'(hn,0))] 

or 

The  object we want  to  determine is the 
local  scaling at  the  mth element, that is, 
the  ratio of nearest  separations  at  the  mth 
iterate of x = 0, at successive  values of n. 
That is, if the  scaling is called o, 

[Observe by Eq. (28),  the  definition of a, 
that o,(O) N (-a)-'.] Specializing again 
to m = 2"-', where  r << n, we have by E q .  
(55) 

( 5  7) 

Finally,  let us rescale  the axis of iterates 
so that all 2"$l iterates are within a unit 
interval. Labelling this axis by t, the 
value o f t  of the mth element in a 2"-cycle 
is 

t,(m) = m/2" . ( 5 8 )  

In particular, we have 

t"(2n-r) = 2-, . (5 9) 

Defining (J along the  t-axis  naturally as 

o(t,(m)) - o,(m> (as n - a) , 
we have by Eqs. (57)  and (59), 

It is not  much  more difficult to obtain (J 

for all  t. This is done first for rational t 
by writing  t in its  binary  expansion: 

In  the 2"-cycle approximation we require 
on at the 2"-*' + 2n-r2 + ... iterate of the 
origin.  But, by Eq. (S), 

f2n-r' + 2"-'2 + ... - f2"-'1 f2"-'2 - 0 ... . 
It follows by manipulations  identical  to 
those that led from Eq. (54) to Eq. (60) 
that o at  such values o f t  is obtained  by 
replacing  the  individual g, terms in Eq. 
(60) by appropriate  iterates of various 

There  is  one  last  ingredient to the 
computation of o. We know that o(0) = 
-a-'. We  also  know  that  o,(l) - aP2. 
But,  by Eq. (59), 

g,'s. 

tn( 1) = 2-" --f 0 . 
Thus o is discontinuous at  t = 0, with 
o(0 - E )  = -ap1 and o(0 + E )  = -+ 
0'). Indeed,  since x2,,-, is always very 
close  to  the  origin,  each of these  points is 
imaged  quadratically.  Thus  Eq. (60) ac- 
tually  determines 0(2-'-' - E),  while 
(~(2-,-' + E )  is obtained by replacing 
each  numerator  and  denominator g, by 
its  square.  The  same  replacement also is 
correct  for  each multi-g, term that 
figures  into t.~ at  the  binary  expanded 
rationals. 

Altogether, we have  the following 
results.  o(t)  can be computed for all t, 
and it is universal since  its explicit com- 
putation  depends  only  upon  the uni- 
versal  functions g,. o is discontinuous 
at all the  rationals.  However,  it  can be 
established that the larger the  number of 
terms in the  binary  expansion of a 
rational  t,  the  smaller  the  discontinuity 
of o. Lastly, as a finite number of iterates 
leaves t  unchanged  as n + a, o must be 
continuous except at the  rationals. 
Figure 10 depicts  l/o(t).  Despite  the 
pathological  nature of o, the  reader will 
observe  that  basically  it is constant half 
the  time  at a-1 and half the  time at a-' 
for 0 < t < x. In  a  succeeding  approx- 
imation, it can be decomposed in each 
half into  two slightly different  quarters, 
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and so forth. [It is easy  to verify from 
Eq. (52)  that o is periodic in t of period 
1, and  has  the  symmetry 

o(t + X) = -o(t) . 
Accordingly, we have paid attention  to 
its first half 0 < t < x.] With o we are  at 
last  finished  with  one-dimensional 
iterates  per se. 

Universal Behavior  in  Higher Dimen- 
sional Systems 

So far we have  discussed iteration in 
one variable; Eq. (15) is the  prototype. 
Equation (14), an example of iteration in 
two  dimensions,  has  the special property 
of preserving areas. A generalization of 
Eq. (141, 

Fig. 10. The trqjectory scaling function. Observe that o (x +- 1/21 = - o (x). and 

with Ib I < 1 ,  contracts  areas.  Equation 
(61) is interesting because it possesses  a 
so-called strange attractor. This  means 
an  attractor  (as before)  constructed by 
folding a  curve  repeatedly  upon itself 
(Fig. 11) with the  consequent  property 
that two initial points  very  near to  one 
another  are, in fact,  very  far  from  each 
other when the  distance is measured 
along the folded attractor, which  is the 
path they follow upon iteration. This 
means  that after some iteration, they will 
soon be far  apart in actual  distance as 
well as when measured  along  the  attrac- 
tor.  This  general  mechanism gives a 
system  highly sensitive dependence upon 
its  initial  conditions  and  a  truly 
statistical character: since very  small dif- 
ferences in  initial  conditions  are 
magnified quickly, unless the initial con- 
ditions are  known to infinite precision, 
all known  knowledge is eroded  rapidly to 

Fig. 11. The plotted points lie on the “strange attractor” of D@ng’s equation. future  ignorance.  Now, Eq. (61) enters 
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